ترمیم اعصاب محیطی

محققان تار عنکبوت و ابریشم کرم ابریشم را برای ایجاد مواد جدیدی برای ترمیم اعصاب با یکدیگر ترکیب کردند. روش‌های کنونی برای ترمیم اعصاب آسیب‌دیده به فواصل کوتاه محدود می‌شوند اما اکنون برای اولین بار، محققان دو نوع ابریشم را برای ایجاد یک روش زیست سازگار امیدوارکننده برای بازسازی اعصاب آسیب دیده در فواصل طولانی‌تر ترکیب کردند. اعصاب محیطی پیام‌هایی را از مغز و نخاع به سایر بخش‌های بدن می‌فرستند تا برای مثال هنگام راه رفتن ماهیچه‌ها حرکت کنند یا مغز به شما اطلاع دهد که پاهایتان سرد است. اعصاب محیطی به راحتی آسیب می‌بینند و توانایی مغز برای برقراری ارتباط با عضلات و اندام‌ها مختل می‌شود. درمان استاندارد برای ترمیم اعصاب محیطی آسیب دیده، اتوگرافت است که در آن جراحان بخش آسیب دیده را جدا می‌کنند و آن را با یک عصب از سایر نقاط بدن جایگزین می‌کنند. عصب پیوندی از یک عصب حسی گرفته می‌شود که حس را به ناحیه‌ای از پوست که در آن داشتن احساس حیاتی نیست، منتقل می‌کند. اما میزان موفقیت پیوندهای عصبی می‌تواند موفقیت‌آمیز باشد یا شکست بخورد.

هدایتگرهای عصبی که ساختارهای لوله‌ای هستند که به دو انتهای عصب بریده شده بخیه می‌شوند تا شکاف را پر کنند، حدود ۳۰ سال است که وجود دارند. با این حال، آنها فقط می‌توانند برای پر کردن شکاف‌های کوچک استفاده شوند. در حال حاضر، هدایتگرهای عصبی که مورد تایید سازمان غذا و داروی آمریکا هستند در فواصل کوتاه تا سه سانتی‌متر محدود شده است. فواصل طولانی‌تر نیازمند یک چارچوب داخلی هستند که پشتیبانی ساختاری و سلولی لازم را فراهم می‌کند. محققان با ترکیب دو نوع ابریشم طبیعی گرفته شده از کرم‌های ابریشم و عنکبوت‌های گوی باف طلایی یک هدایتگر عصبی برای بازسازی اعصاب در فواصل طولانی‌تر جدید ایجاد کرده‌اند. مطالعات قبلی مزایای استفاده از ابریشم به عنوان یک ماده زیستی را نشان داده است. ابریشم از پروتئین‌های فیبروئین و سریسین تشکیل شده است. هر دوی این ابریشم‌ها سازگار با محیط زیست، الاستیک و محکم هستند. مشخص شده است که فیبروئین ابریشم با افزایش تکثیر و رشد سلولی باعث التیام زخم می‌شود. ابریشم عنکبوت نیز دارای خواص مکانیکی قابل توجهی از جمله استحکام کششی و انعطاف پذیری بالا است.

برای اولین بار، محققان مشخصه‌های فیبروئین بازسازی شده‌ی ابریشم را با لوله‌ها و رشته‌های ابریشم طبیعی عنکبوت ترکیب کردند تا یک ساختار ابریشم در ابریشم ایجاد کنند. دیواره این ساختار از فیبروین ابریشم کرم ابریشم ساخته شده و پر از الیاف ابریشم عنکبوت است که به عنوان یک ساختار هدایت کننده داخلی عمل می‌کند. هدایتگر عصبی بر روی موش‌هایی که عصب سیاتیک راست آن‌ها قطع شده و شکافی ۱۰ میلی‌متری در آن ایجاد شده بود، آزمایش شدند. محققان دریافتند که اعصاب آسیب دیده با هدایتگر عصبی ابریشمی سازگار شده‌اند و این اعصاب در امتداد رشته‌های ابریشمی رشد کرده و با موفقیت دو انتهای بریده شده به هم وصل شده‌اند. نویسنده این مطالعه می‌گوید: در مطالعه ما، مشخص شد که اعصاب محیطی زمانی که چنین رشته‌هایی از ابریشم ساخته می‌شوند به خوبی عمل می‌کنند و به نظر می‌رسد ابریشم عنکبوت برای هدایتگرها مناسب‌تر است.

محققان همچنین درک بیشتری از ساختار مولکولی ابریشم به دست آوردند و دریافتند که تخلخل آنها امکان تبادل مواد مغذی و مواد زائد را فراهم می‌کند که برای فرآیند بهبودی حیاتی است. علاوه بر این، سلول‌هایی که مسئول بازسازی عصبی هستند به هر دو نوع ابریشم می‌چسبند. به عنوان بخشی از این مطالعه، ما نه تنها در ترمیم عصب موفق بودیم، بلکه توانستیم اجزای فرآیند درمان را با جزئیات تجزیه و تحلیل کنیم. استفاده از مواد طبیعی برای ایجاد هدایتگرهای عصبی مزایای آشکاری نسبت به مواد مصنوعی دارد. ابریشم عنکبوت زیست تخریب پذیر است و در مدل‌های حیوانی پاسخ ایمنی بسیار کمی ایجاد می‌کند. ماهیت متخلخل ابریشم می‌تواند امکان ترکیب مولکول‌های فعال زیستی را برای ترویج بازسازی اعصاب در فواصل طولانی‌تر فراهم کند. محققان امیدوارند که کشف آنها راه را برای توسعه هدایتگر عصبی «خارجی» برای درمان آسیب‌های عصبی محیطی در انسان هموار کند. منبع

بازدیدها: 42

تخصصی کردن سلول‌های بنیادی انسانی

آسیب به نخاع اغلب منجر به ناتوانی در تغییر زندگی، با کاهش یا از دست دادن کامل حس و حرکت در زیر محل آسیب می‌شود. از داروها گرفته تا پیوند، پیشرفت‌های علمی زیادی وجود دارد که هدف آنها بازیابی عملکرد پس از آسیب نخاعی است. یکی از رویکردهای امیدوارکننده، استفاده از نورون‌های مشتق از سلول‌های بنیادی برای جایگزینی نورون‌های آسیب دیده است. تحقیقات جدید امیدوار است که با ارائه جمعیت‌های خالص از سلول‌های عصبی ساخته شده از سلول‌های بنیادی، این رویکرد را بهبود بخشد.

نخاع ساختار ظریفی است و نورون‌ها پیام‌هایی را از مغز به بقیه بدن می‌رسانند تا حرکت و احساس را امکان‌پذیر کنند. بخش جدایی ناپذیر این سیستم، نورون‌های داخلی یا سلول‌هایی هستند که اطلاعات را بین مغز و سایر نورون‌ها منتقل می‌کنند. تحقیقات قبلاً نشان داده است که پیوند یک دسته از نورون‌های بین‌اعصاب، اینترنورون‌های نخاعی شکمی، برای درمان آسیب نخاعی در مدل‌های حیوانی، بهبود امیدوارکننده‌ای عملکرد حسی و حرکتی را فراهم می‌کند. با این حال، استفاده از این نورون‌ها در پیوند انسان یا مطالعه در مقیاس بزرگ‌تر به دلیل تعداد محدود آنها پس از جداسازی از بافت نخاع جنینی دشوار است. علاوه بر این، بسیاری از انواع مختلف نورون‌های داخلی به دو دسته اصلی تقسیم می‌شوند: مهاری و تحریکی. اینترنورون‌های تحریکی برای سلول درمانی بسیار امیدوارکننده هستند، زیرا آنها اطلاعات را به جای سرکوب آن، انتقال می‌دهند. برای غلبه بر این مشکل، ممکن است مقادیر زیادی از اینترنورون‌های تحریک کننده از سلول‌های بنیادی انسان ساخته شود.

یک روش موثر برای رشد و خالص‌سازی جمعیت‌های یک شکل اولیه از اینترنورون‌های نخاعی شکمی تحریک‌کننده، معروف به اجداد را تشریح می‌کند. این روش بر پایه درک چندین دهه از رشد نورون در جنین استوار است و از عوامل شیمیایی که این فرآیند را تقلید می‌کنند برای هدایت تخصصی سلول‌های بنیادی جنینی به جمعیت مخلوطی از سلول‌های عصبی استوار است. در میان آنها، پیش سازهای بین نورون را می‌توان به لطف تغییر ژنتیکی که یک گیرنده را روی سطح سلول نشان می‌دهد، شناسایی کرد. سپس سلول‌های دارای این برچسب را می‌توان جدا کرد تا خلوص باورنکردنی ۹۵ درصد به دست آید. پس از جداسازی، سلول‌ها در نورون‌های نخاعی شکمی که کاملاً کار می‌کنند بالغ می‌شوند.

این نتایج برای زمینه تحقیقات نخاعی اهمیت زیادی دارد. نورون‌های داخلی نخاعی شکمی بخشی جدایی ناپذیر از شبکه‌های عصبی نخاعی محلی هستند و یک استراتژی برای استخراج این نوع سلول از سلول‌های بنیادی انسان بدون شک تاثیر زیادی بر مطالعات رشدی خواهد داشت.  منبع

 

 

بازدیدها: 83

درمان آسیب نخاعی با کُره‌های سلولی سه‌بعدی

پژوهشگران با به کار گرفتن کُره‌های سلولی سه‌بعدی و چندمنظوره توانستند نخاع آسیب‌دیده را در موش‌ها درمان کنند. یک نانوساختار که سلول‌های بنیادی عصبی در آن تعبیه شده‌اند، با داشتن مزایای ساختاری و بیولوژیکی نسبت به مدل‌های پیشین، نخاع آسیب‌دیده را در موش‌ها ترمیم کرد. در پژوهش‌های پایه و بالینی، تلاش‌های درمانی پس از آسیب نخاعی معمولا نوعی از خوددرمانی را با استفاده از عوامل خارجی شیمیایی یا بیولوژیکی به کار می‌برند. درمان با سلول‌های بنیادی که سلول‌های بنیادی عصبی را برای بازسازی عصبی تحریک می‌کند، در گذشته توجه زیادی را به خود جلب کرده است، اما مزایای آن باید در عمل دیده شود.

چالش‌های زیادی در درمان آسیب نخاعی وجود دارد؛ از جمله چگونگی دستیابی به بازسازی مؤثر عصب، نحوه دستیابی به درمان ویژه و این که آیا پیوند سلول‌ها یا مواد، مشکلات جدیدی را به همراه خواهد داشت یا خیر.راگرچه پیوند سلول‌های بنیادی عصبی یک مدعی قوی برای درمان آسیب نخاعی است، اما می‌تواند با مشکلاتی همراه باشد. سلول‌های بنیادی عصبی برای کمک کردن به ترمیم نخاع باید رشد کنند و به سلول‌های عصبی کاملا توسعه‌یافته تبدیل شوند، اما این سلول‌ها در صورت پیوند زده شدن، برای بقاء و تبدیل شدن به انواع دیگر سلول‌های عصبی که برای بازسازی نخاع آسیب‌دیده مورد نیاز هستند، مشکل دارند. یکی از روش‌های پیوند سلول‌های بنیادی عصبی که برای درمان آسیب نخاعی در حال بررسی است، از کُره‌های سلولی استفاده می‌کند. این کُره‌ها، مجموعه‌ای سه‌بعدی از سلول‌ها هستند که معمولا با نوعی نانومواد برای پشتیبانی و حفاظت ساختاری همراه شده‌اند. در روش رایج تبدیل کردن سلول‌های بنیادی به یک کُره‌ سه‌بعدی نمی‌توان اکسیژن، مواد مغذی و سایر عناصر را با موفقیت به هسته کُره‌ منتقل کرد. زمانی که سلول‌های کشت‌شده نتوانند به اکسیژن و مواد مغذی دسترسی داشته باشند، مرگ سلولی رخ می‌دهد و هر گونه تلاش برای ترمیم غیرممکن می‌شود.

محققان برای برطرف کردن این مشکل، نوع جدیدی از کُره‌ سلولی را طراحی و ابداع کردند. آنها از یک ماده معدنی کلسیم فسفات موسوم به «هیدروکسی‌آپاتیت» استفاده کردند که معمولا در استخوان یافت می‌شود و به صورت تجاری برای ترمیم آن به کار می‌رود. این گروه پژوهشی، هیدروکسی‌آپاتیت را برای ساختن نانوساختارهای نی‌مانند به کار بردند که به دلیل شباهت به تسمه، نانوتسمه نامیده می‌شوند. پژوهشگران این نانوتسمه‌ها را با «پلی‌دوپامین» پوشاندند. پلی‌دوپامین، یک پوشش پلیمری چسبناک شبیه به ترشحات صدف‌ها و اکسید آهن سوپرپارامغناطیس را تشکیل داد. اکسید آهن سوپرپارامغناطیس، نانوذراتی هستند که وقتی در معرض میدان مغناطیسی بیرونی قرار می‌گیرند، مغناطیسی می‌شوند. نانوتسمه‌های هیدروکسی‌آپاتیت با سلول‌های بنیادی عصبی موش ترکیب شدند. در حالی که پلی‌دوپامین به سلول‌ها کمک می‌کند تا بهتر به نانوساختار بچسبند، اکسید آهن در طول پیوند، کُره‌ را به صورت مغناطیسی در مناطق خاصی هدف قرار می‌دهد. پژوهشگران از طریق یک مجموعه آزمایش‌های برون‌تنی و درون‌تنی دریافتند که کُره‌ها از نظر ساختاری سالم، زیست‌سازگار و پایدار هستند. به گفته هائو، این نانوساختارها نقش کمربند حمل‌ونقل مواد مغذی را بر عهده داشتند. نانوتسمه با حمل مواد مغذی، اکسیژن و سایر مولکول‌های محلول، از مرگ سلولی رایج در مدل‌های پیشین جلوگیری کرد. به موازات آن، عملکرد بیولوژیکی نانوتسمه به سلول‌های عصبی پیوندی کمک کرد تا زنده بمانند، بالغ شوند و به سرعت گسترش پیدا کنند. نانوتسمه‌های دو عملکردی هیدروکسی‌آپاتیت، تبدیل سلولی را که در کُره‌های سلولی سه‌بعدی صورت می‌گیرد، تقویت می‌کنند.

سلول‌های بنیادی عصبی موش که به شکل کُره‌های سلولی سه‌بعدی پیوند زده شدند، توانستند پس از آسیب نخاعی، ترمیم را تقویت کنند. پژوهشگران باور دارند که این کُره‌های سلولی سه‌بعدی اصلاح‌شده می‌توانند یک روش درمانی را برای آسیب‌های نخاعی ناشی از تصادف رانندگی ارائه دهند. راهبرد کُره‌های هیبریدی چندمنظوره سه‌بعدی، چشم‌انداز جدیدی را برای درمان فراتر از ترمیم آسیب نخاعی به ارمغان می‌آورد. این روش درمانی، سلول‌های بنیادی را نه تنها در آسیب نخاعی، بلکه در سایر بیماری‌ها نیز تقویت می‌کند. این کُره‌های سلولی را می‌توان در ترمیم استخوان‌ها و همچنین در سایر تنظیمات سلولی به کار گرفت. تنظیم چندعملکردی کُره سلولی از جمله ریزمحیط عصبی آن پس از پیوند به بدن، چیزی است که ما باید بهبود ببخشیم و مکانیسم درون‌تنی را باید بیشتر مورد بررسی قرار دهیم. ما در حال حاضر با پژوهشگران حوزه‌های پزشکی و زیست‌شناسی برای بهبود آن کار می‌کنیم. منبع

ته‌بندی: میگن: شنگول یه خانم سیاه‌پوست می‌بینه!؟ با تعجب می‌پرسه: ببخشید خانم تو شبی!؟ سیاهه شاکی میشه، زارپی با کیف دستیش می‌کوبه تو سر شنگول. شنگول هم ناراحت میشه و میگه: عجب شب بدی؟

حکایت ما نخاعی‌ها، مثل همین جوک بی‌مزه بالاست. تا خواستیم از تیمارستانی که روحانیون، بنام دنیا برامون ساختند، لذت ببریم، درون سیاه چاله‌ای افتادیم که شکنجه‌گاه جهنم در مقابلش مثل مجالس لهو و لعب و پیاله پیاله باده نوشی و می گساری و ملاعبه با حور و ملک در جنت است صد مقابل.

یک سال دیگه از سال‌های عمر کمی که داریم را با درد بی درمان حرام کردیم. گرچه هر روز زیستن با ضایعه نخاعی خودش عمری است طولانی.

من که از این بخت و اقبال که خدا بمن داد، داد به خدا می‌برم.

بازدیدها: 83

گربه و درمان آسیب نخاعی

گربه‌ها همیشه روی پاهای خود فرود می‌آیند، اما چه چیزی آنها را اینقدر چابک می کند؟ حس منحصر به فرد تعادل آنها بیش از آنچه به نظر می‌رسد با انسان مشترک است. محققان در حال مطالعه حرکت گربه‌ها هستند تا بهتر بفهمند که چگونه نخاع برای کمک به انسان‌هایی که آسیب جزئی نخاع دارند راه بروند و تعادل را حفظ کنند. محققان با استفاده از ترکیبی از مطالعات تجربی و مدل‌های محاسباتی نشان می‌دهند که بازخورد حسی جسمی یا سیگنال‌های عصبی از حسگرهای تخصصی در سراسر بدن گربه، به اطلاع ‌رسانی نخاع در مورد حرکت ادامه‌دار کمک می‌کند و چهار دست و پا را هماهنگ می‌کند تا گربه‌ها در هنگام برخورد با آن‌ها سقوط نکنند. موانع تحقیقات نشان می‌دهد که با آن سیگنال‌های حسی مرتبط با حرکت، حیوان می‌تواند راه برود حتی اگر اتصال بین نخاع و مغز تا حدی شکسته باشد. درک مکانیسم‌های این نوع کنترل تعادل به ویژه برای افراد مسن که اغلب مشکلات تعادلی دارند و می‌توانند در هنگام زمین خوردن به خود آسیب برسانند مربوط می‌شود. در نهایت، محققان امیدوارند که این بتواند درک جدیدی از نقش بازخورد حسی تنی در کنترل تعادل به ارمغان بیاورد. همچنین می‌تواند منجر به پیشرفت در درمان آسیب نخاعی شود، زیرا تحقیقات نشان می‌دهد که فعال شدن نورون‌های حسی جسمی می‌تواند عملکرد شبکه‌های عصبی نخاعی را در زیر محل آسیب نخاع بهبود بخشد. ما به مکانیسم‌هایی علاقه مند شده‌ایم که امکان فعال سازی مجدد شبکه‌های آسیب دیده در نخاع را فراهم می‌کند. ما از مطالعات قبلی می‌دانیم که بازخورد حسی جسمی از پاهای متحرک به فعال کردن شبکه‌های نخاعی که حرکت را کنترل می‌کنند، کمک می‌کند و حرکت پایدار را ممکن می‌سازد.

اگرچه مدل‌های موش اصلاح‌شده ژنتیکی اخیراً در کنترل عصبی تحقیقات حرکتی غالب شده‌اند، مدل گربه یک مزیت مهم ارائه می‌کند. هنگامی که موش‌ها حرکت می‌کنند، خمیده باقی می‌مانند، به این معنی که حتی اگر بازخورد حسی جسمی با شکست مواجه شود، کمتر دچار مشکل تعادل می‌شوند. از سوی دیگر، انسان و گربه در صورت از دست دادن اطلاعات حسی در مورد حرکت اندام، نمی توانند تعادل خود را حفظ کنند یا حتی حرکت کنند. این نشان می‌دهد که گونه‌های بزرگ‌تر، مانند گربه‌ها و انسان‌ها، ممکن است سازماندهی متفاوتی از شبکه عصبی نخاعی کنترل کننده حرکت در مقایسه با جوندگان داشته باشند. محققان همکاری کردند تا درک بهتری داشته باشد که چگونه سیگنال‌های نورون‌های حسی حرکات چهار پا را هماهنگ می‌کنند. آزمایشگاه به گربه‌ها آموزش داد تا با سرعتی مطابق با راه رفتن انسان روی تردمیل راه بروند و سپس از الکترودها برای تحریک عصب حسی آنها استفاده کردند. محققان بر روی عصب حسی تمرکز کردند که حس لمس را از بالای پا به نخاع منتقل می‌کند. با تحریک الکتریکی این عصب، محققان برخورد با مانع را تقلید کردند و دیدند که چگونه گربه‌ها تلو تلو خوردند و در پاسخ حرکت خود را اصلاح کردند. تحریک‌ها در چهار دوره چرخه راه رفتن اعمال شد: حالت وسط، انتقال از ایستاد به چرخش، وسط چرخش و انتقال چرخش به ایستاد. از این رو، آنها دریافتند که چرخش میانی و انتقال ایستاده به چرخش مهم‌ترین دوره‌ها هستند، زیرا این تحریک باعث افزایش فعالیت عضلاتی می‌شود که مفاصل زانو و لگن را خم می‌کنند، خم شدن مفاصل و ارتفاع انگشتان پا، طول گام و طول گام را افزایش می‌دهد. اندام تحریک شده.

محققان گفتند: برای حفظ تعادل، حیوان باید حرکت سه اندام دیگر را هماهنگ کند، در غیر این صورت سقوط می‌کند. ما دریافتیم که تحریک این عصب در مرحله نوسان باعث افزایش طول مدت مرحله ایستادن سایر اندام‌ها و بهبود ثبات می‌شود. در واقع، هنگامی که گربه در مرحله چرخش زمین می‌خورد، این حس باعث ایجاد رفلکس‌های نخاعی می‌شود که تضمین می‌کند سه اندام دیگر روی زمین می‌مانند و گربه را صاف و متعادل نگه می‌دارند، در حالی که اندام چرخان از روی مانع عبور می‌کند. با این آزمایش‌ها، محققان از مشاهدات برای توسعه یک مدل محاسباتی از سیستم‌های کنترل عصبی اسکلتی عضلانی و نخاعی گربه استفاده می‌کنند. داده‌های جمع‌آوری‌شده برای محاسبه سیگنال‌های حسی جسمی مربوط به طول، سرعت، و نیروی تولیدی ماهیچه‌ها و همچنین فشار روی پوست در همه اندام‌ها استفاده می‌شود. این اطلاعات احساسات حرکتی را در طناب نخاعی حیوان تشکیل می‌دهد و به هماهنگی بین اندام توسط شبکه‌های عصبی نخاعی کمک می‌کند. برای کمک به درمان هر بیماری، ما باید نحوه عملکرد سیستم دست نخورده را درک کنیم. این یکی از دلایلی بود که این مطالعه انجام شد، بنابراین ما می‌توانستیم بفهمیم که چگونه شبکه‌های نخاعی حرکات اندام را هماهنگ می‌کنند و یک مدل محاسباتی واقعی از کنترل حرکت ستون فقرات ایجاد می‌کنند. این به ما کمک می‌کند بهتر بدانیم نخاع چگونه حرکت را کنترل می‌کند. منبع

بازدیدها: 242

مسیر نهایی درمان‌ آسیب نخاعی

کارآزمایی بالینی برای بیماران مبتلا به ضایعات شدید نخاعی امیدوار کننده است. مطالعه پیشرفت‌هایی را با استفاده از داربست عصبی نخاعی نشان می‌دهد.

جیسون سروانتس از چیکو نزدیک به دو سال پیش تصادف عجیبی داشت. او به سرعت به یک بیمارستان محلی منتقل شد، جایی که پزشکان به سرعت متوجه شدند که صدمات ستون فقرات او شدید است و نیاز به مراقبت‌های ویژه دارد. آنها به هلیکوپتری دستور دادند که او را به مرکز پزشکی منتقل کند، جایی که صبح روز بعد تحت عمل جراحی قرار گرفت. این تصادف باعث شد سروانتس از کمر به پایین فلج شود. او در حال حاضر با استفاده از ویلچر دور می‌زند. سروانتس که همیشه در حال حرکت بود، راهی برای کمک به دیگرانی مانند خودش که دچار آسیب نخاعی هستند می‌خواست. بنابراین، زمانی که جراحان با او در مورد یک کارآزمایی بالینی سراسری برای آزمایش یک درمان جدید برای بازسازی نخاع به او مراجعه کردند، موافقت کرد. رئیس جراحی مغز و اعصاب ستون فقرات و مدیر مرکز ستون فقرات هدایت این مطالعه تصادفی را بر عهده دارد.

درمان شامل قرار دادن داربست زیست پلیمری قابل جذب در محل آسیب نخاعی است. محققان امیدوارند که منجر به بهبود عملکرد نخاع شود. سروانتس که اکنون در سال دوم آزمایش است، نمی‌داند که آیا درمان را دریافت کرده است یا اینکه در گروه کنترل است که داربست را دریافت نمی‌کند. سروانتس توضیح داد: اگر برای درمان انتخاب نشده باشم، این ممکن است به من کمکی نکند، اما اگر با شرکت در این تحقیق بتوانم بعداً به دیگرانی که آسیب مشابهی دارند کمک کنم، ارزشش را دارد.

به طور معمول، آسیب انتقال عصبی در نخاع را مختل می‌کند و به زودی پس از آسیب، نخاع در محل آسیب متورم می‌شود. تورم فشار روی نخاع را افزایش می‌دهد و حتی ممکن است جریان خون را به اعصاب باقیمانده قطع کند. این ممکن است بر عملکردهای حسی و مهارت‌های حرکتی فرد تأثیر بگذارد و حتی منجر به فلج کامل یا جزئی اندام ها و اندام‌های بدن شود. کیست (جیب کیسه مانند از بافت که حاوی مایع، هوا یا مواد دیگر است) نیز ممکن است روی نخاع در محل آسیب ایجاد شود – که باعث انسداد بیشتر در بازسازی نخاع می‌شود. کارآزمایی بالینی که انجام شده است. در این کارآزمایی ۱۶ فرد ۱۶ تا ۷۰ ساله با آسیب های شدید در قسمت قفسه سینه ستون فقرات خود انتخاب شدند. درمان ابتکاری شامل قرار دادن یک داربست عصبی نخاعی در نخاع آسیب دیده است. این دستگاه بیوپلیمر بسیار متخلخل تجزیه شده و توسط بدن جذب می‌شود.

محققان نتیجه شش ماهه ۱۶ شرکت کننده در مطالعه را به اشتراک گذاشتند. آنها دریافتند که بیمارانی که با این دستگاه درمان می‌شوند، نسبت به بیمارانی با آسیب مشابهی که مداخله را دریافت نکرده‌اند، احساس می‌کنند در نواحی فلج بدنشان با سرعت کمی بیشتر است. در اوایل سال جاری، این تیم یک پیگیری ۲۴ ماهه در زمینه جراحی مغز و اعصاب منتشر کرد. آنها گزارش دادند که برخی از بیماران با این دستگاه حتی بیشتر بهبود یافته‌اند. محققان هیچ عارضه پیش بینی نشده یا شدیدی را مشاهده نکردند.

این نتایج نشان می‌دهد که ما ممکن است در مسیر درمان‌های نهایی باشیم که ممکن است به طور قابل توجهی کیفیت زندگی بیماران مبتلا به آسیب نخاعی را بهبود بخشد، شاید حتی به آنها اجازه دهد بدون ویلچر کار کنند. او افزود که اعتقاد بر این است که این اولین مطالعه‌ای است که نشان می‌دهد قرار دادن یک داربست عصبی- نخاعی در نخاع آسیب دیده ایمن است. موفقیت اولیه این مطالعه، امیدبخشی به بیماران آسیب دیده و خانواده‌های آنها است. کار ما بدون تیم اختصاصی از دستیاران، همکاران، ارائه دهندگان حرفه‌ای پیشرفته، هماهنگ کنندگان تحقیقات بالینی و همکاران ستون فقرات امکان پذیر نخواهد بود. ما با هم کار می‌کنیم تا کمک‌های قابل توجهی برای بهبود زندگی بیماران آسیب دیده و فلج خود داشته باشیم، و این امر باعث خواهد شد بدون تلاش تیمی ما ممکن نیست. منبع

بازدیدها: 112

داربستی برای درمان آسیب نخاعی

مواد جدید منحصر به فرد توسعه یافته نویدهای قابل توجهی را در درمان آسیب نخاعی نشان داده است. تحقیقات کاملاً جدید پیشرفت‌های هیجان انگیزی در زمینه ترمیم بافت نخاع داشته است. به گفته محققان، بیومواد هیبریدی جدیدی که به شکل نانوذرات و بر اساس روش‌های موجود در زمینه مهندسی بافت توسعه یافته‌اند، با موفقیت برای ترویج ترمیم و بازسازی پس از آسیب نخاعی سنتز شدند. محققان از نوع جدیدی از مواد داربست و یک کامپوزیت پلیمری جدید منحصر به فرد رسانای الکتریکی برای ارتقاء رشد بافت جدید استفاده کردند.

تیم تحقیقاتی علاقه فزایندهای به استفاده از داربست های مهندسی بافت الکترورسانا را توصیف می کند که به دلیل رشد و تکثیر سلولی بهبود یافته زمانی که سلول‌ها در معرض داربست رسانا قرار می‌گیرند، پدیدار شده است. افزایش رسانایی مواد زیستی برای توسعه چنین استراتژی‌های درمانی معمولاً بر افزودن اجزای رسانا مانند نانولوله‌های کربنی یا پلیمرهای رسانا مانند متمرکز است که یک پلیمر رسانای تجاری موجود است که تا به امروز در زمینه مهندسی بافت استفاده شده است. متاسفانه، محدودیت‌های شدید هنگام استفاده از پلیمر در کاربردهای زیست پزشکی وجود دارد. این پلیمر به متکی است تا محلول در آب باشد، اما زمانی که این ماده در بدن کاشته می‌شود، زیست سازگاری ضعیفی را نشان می‌دهد. این بدان معناست که بدن با قرار گرفتن در معرض این پلیمر، پاسخ‌های سمی یا ایمنی بالقوه‌ای دارد که در بافت آسیب‌دیده‌ای که در حال تلاش برای بازسازی آن هستیم ایده‌آل نیستند.

نانوذرات جدید در این مطالعه برای غلبه بر این محدودیت توسعه یافتند. سنتز نانوذرات رسانا اجازه می‌دهد تا برای دستیابی به پاسخ سلولی مورد نظر و افزایش تنوع اجزای هیدروژل، بدون حضور مورد نیاز برای حلالیت در آب، اصلاح متناسب سطح نانوذرات انجام شود. در این کار، مواد زیستی ترکیبی متشکل از ژلاتین و اسید هیالورونیک تعدیل‌کننده ایمنی، ماده‌ای که طی سال‌ها توسعه داده شده است، با نانوذرات جدید توسعه‌یافته ترکیب شد تا داربست‌های رسانای الکتریکی زیست سازگار را برای ترمیم هدفمند آسیب نخاعی ایجاد کند. معرفی نانوذرات به مواد زیستی رسانایی نمونه‌ها را افزایش داد. علاوه بر این، خواص مکانیکی مواد کاشته شده باید از بافت مورد علاقه در استراتژی‌های مهندسی بافت تقلید کند، با داربست‌های توسعه یافته که با مقادیر مکانیکی ستون فقرات بومی مطابقت دارند. پاسخ بیولوژیکی به داربست‌های توسعه یافته با سلول‌های بنیادی در شرایط آزمایشگاهی و در مدل‌های حیوانی آسیب نخاعی در داخل بدن مورد مطالعه قرار گرفت. آنها گزارش دادند که اتصال و رشد عالی سلول‌های بنیادی روی داربست‌ها مشاهده شد.

بر اساس این مطالعه، آزمایش مهاجرت سلول‌های آکسونی بیشتر به سمت محل آسیب نخاعی، که داربست در آن کاشته شده بود، و همچنین سطوح کمتری از زخم و التهاب را نسبت به مدل آسیب‌دیدگی که فاقد داربست بود، نشان داد. به گفته تیم تحقیقاتی، به طور کلی، این نتایج پتانسیل این مواد را برای ترمیم نخاع نشان می‌دهد. این نتایج چشم اندازهای دلگرم کننده‌ای برای بیماران ارائه می‌دهد و تحقیقات بیشتری در این زمینه برنامه ریزی شده است. مطالعات نشان داده اند که آستانه تحریک پذیری نورون‌های حرکتی در انتهای دیستال آسیب نخاعی بیشتر است. پروژه آینده طراحی داربست را بیشتر بهبود می‌بخشد و گرادیان‌های رسانایی را در داربست ایجاد می‌کند و رسانایی به سمت انتهای دیستال افزایش می‌یابد. ضایعه برای تحریک بیشتر نورون‌ها برای بازسازی. منبع

بازدیدها: 79

چرا آسیب نخاعی منجر به فلج می‌شود؟

طناب نخاعی مجرای بزرگی از اعصاب است که به صورت عمودی در وسط پشت فرد قرار دارد و بخشی از سیستم عصبی مرکزی است. در بالا به مغز و در پایین به قسمت پایین کمر متصل می‌شود. طناب نخاعی به دلیل ارتباط با مغز، مسئول حمل پیام‌هایی از مغز است که به اندام‌ها می‌گوید حرکت کنند و به کنترل عملکردهای بدن مانند تنفس و ضربان قلب کمک می‌کند. نخاع همچنین پیام‌هایی را از قسمت‌های مختلف بدن به مغز منتقل می‌کند و به فرد اجازه می‌دهد تا احساساتی مانند لمس و درد. نخاع می‌تواند در اثر حوادث آسیب زا مانند تصادفات رانندگی و سقوط آسیب ببیند. آسیب به نخاع توانایی آن را برای ارسال پیام به مغز مختل می‌کند. این امر بر نحوه عملکرد مغز به عضلات بدن تأثیر می‌گذارد و باعث حرکات کنترل نشده یا در برخی موارد هیچ حرکتی در مناطق خاصی از بدن نمی‌شود. نوع فلج فرد به آن بستگی دارد جایی که آسیب رخ می‌دهد. آسیب به نیمه تحتانی نخاع می‌تواند باعث پاراپلژی شود که فلج قسمت تحتانی بدن از جمله پاها است. آسیب به نیمه بالایی نخاع می‌تواند باعث تتراپلژی یا چهار پلژی شود که باعث فلج شدن بدن از گردن به پایین می‌شود. نقش نورونها از طریق این مطالعه چند ساله، دانشمندان نورون‌های خاصی را شناسایی کردند که وقتی فعال می‌شوند، به فرد فلج کمک می‌کند بایستد، راه برود و ماهیچه‌های خود را بازسازی کند.

یکی از نویسندگان این مطالعه، توضیح داد: نرونها هسته سیستم عصبی هر موجود زندهای هستند. آنها با یکدیگر ارتباط برقرار می‌کنند تا سیگنال‌های الکتریکی را منتقل کنند که به عنوان مثال می‌تواند ماهیچه‌ها را فعال کند. در تحقیقات خود، ما به طور خاص نورون‌هایی را که در حین حرکت پا فعال می‌شوند، هدف قرار می‌دهیم.

برای کشف این نورون‌های خاص، این تیم از فناوری‌های تصویربرداری پیشرفته برای ساختن یک اطلس مولکولی از تمام نورون‌های موجود در مناطق مورد نظر نخاع استفاده کردند. با استفاده از تحریک نوری، ما توانسته‌ایم نورون‌های خاصی را در مدل‌های حیوانی غیرفعال کنیم و تأثیر این روش را ببینیم. این به ما این امکان را می‌دهد که دقیقاً نورونی را که برای بازسازی مسیر عصبی پس از آسیب نخاعی لازم و کافی بود، شناسایی کنیم. پس از آزمایشات روی موش، تیم تحقیقاتی به شرکت کنندگان انسانی روی آوردند. دکتر گفت که محققان ۹ داوطلب فلج را با یک آرایه الکترود نرم طراحی کردند که برای تحریک نواحی الکتریکی خاص نخاع، زیر نقطه آسیب طراحی شده بود. یک کامپیوتر آن تحریک‌ها را تحریک می‌کند، که سیگنال‌هایی را که معمولاً توسط مغز ارسال می‌شود، زمانی که آسیبی وجود ندارد، تقلید می‌کند. دور زدن آسیب به ما این امکان را می‌دهد تا ماهیچه‌های پا را به‌طور مصنوعی فعال کنیم و به شرکت‌کنندگان این فرصت را بدهیم تا دوباره راه بروند. اما ما مشاهده کرده‌ایم که در طول این فرآیند، برخی از ارتباطات بیولوژیکی دوباره برقرار یا سازماندهی شدند. به عنوان یک اثر، بیماران پس از مدتی تمرین با تحریک الکتریکی، حتی بدون تحریک خارجی قادر به حرکت دادن پاهای خود بودند.

آسیب‌هایی مانند آسیب نخاعی به نورون‌ها و اتصالات آنها آسیب می‌رساند، راه رفتن و سایر عملکردهای حرکتی را از کار می‌اندازد. تئوری‌های بسیاری برای این تاثیر آسیب معتقدند که آسیب مستقیماً سلول‌های کنترل کننده حرکت و اتصالات آنها را مختل می‌کند و این یکی از دلایل اختلال در راه رفتن است. با این حال، شواهد علمی همچنین نشان می‌دهد که سکته مغزی، نخاع و آسیب مغزی تروماتیک نیز نورون‌هایی را که از آسیب جان سالم به در می‌برند، بیهوش می‌کند و این جمعیت نورون‌های زنده مانده نمی‌توانند عملکرد از دست رفته را بازیابی کنند، زیرا نمی‌توانند با هم شلیک کنند تا میانجی حرکت کنند. این ایده در مورد عدم توانایی نورون‌های زنده پس از آسیب مغزی و نخاعی برای شلیک با هم در یک توالی هماهنگ با همسایگان خود توسط بسیاری از مطالعات در مدل‌های تجربی در آزمایشگاه و به روش همبستگی در مطالعات انسانی پشتیبانی می‌شود. بسیاری از افراد در زمینه توانبخشی عصبی تصور می‌کردند که تحریک طناب نخاعی با تسهیل شلیک نورون‌ها با هم در توالی مناسب و درون گروه جدیدی از نورون‌های فعال شبکه جدیدی از نورون‌ها که عملکرد راه رفتن را بر عهده می‌گیرد، واسطه بهبود راه رفتن است. با این حال، این گروه از نویسندگان دریافتند که در عوض، تحریک طناب نخاعی، فعالیت اکثر نورون‌ها را کاهش می‌دهد و به‌طور انتخابی جمعیت جدیدی از نورون‌ها را فعال می‌کند که کمتر شناخته شده‌اند، یعنی نورون‌های Vsx2.

گزینه‌های مرحله بعدی: چند رویکرد وجود دارد که دانشمندان می‌توانند اتخاذ کنند. یکی این است که ببینیم آیا نورون‌های تازه شناسایی شده می‌توانند از طریق یک داروی هدفمند فعال شوند یا خیر. رویکرد دوم، جداسازی رفتار درمانی در رویکرد توانبخشی یا تحریک است که ممکن است در جداسازی انتخابی این سلول‌ها بهتر از کل رویکرد توانبخشی یا تحریک الکتریکی در شکل کامل آن باشد. این ممکن است اثربخشی توانبخشی یا تحریک اپیدورال را افزایش دهد. همچنین ممکن است هدف قرار دادن ژنی که می‌تواند برای فعال کردن این سلول‌ها مورد استفاده قرار گیرد، در انسان نیز امکان پذیر باشد، همانطور که در این مطالعات روی موش‌ها انجام شد. اگر این امکان وجود داشت، یک سری تزریق در نخاع آسیب دیده و مجاور انسان ممکن است ژنی را منتقل کند که می‌تواند توسط یک داروی خوراکی یا داروی تزریقی فعال شود و این می‌تواند توانبخشی یا تحریک الکتریکی نخاع را تقلید کند.

بازدیدها: 106

بازسازی ژنتیک نخاع

تحقیقات جدید نشان می‌دهد که درمان هفتگی اپی ژنتیک در موش‌ها می‌تواند از بازسازی نخاع پس از آسیب شدید حمایت کند. با این حال، تحقیقات نشان می‌دهد که درمان‌های هفتگی با یک فعال کننده اپی ژنتیک می‌تواند به رشد مجدد نورون‌های حسی و حرکتی در نخاع کمک کند که ۱۲ هفته پس از آسیب شدید به موش‌ها داده شود. محققان از یک مولکول کوچک به نام TTK21 برای فعال کردن برنامه‌ریزی ژنتیکی استفاده کردند که باعث بازسازی آکسون (الیاف عصبی) در نورون‌ها می‌شود. TTK21 با فعال کردن خانواده CBP/p300 از پروتئین‌های فعال کننده، وضعیت اپی ژنتیکی ژن‌ها را تغییر می‌دهد. این تیم درمان TTK21 را در مدل موش آسیب شدید نخاعی آزمایش کردند. موش‌ها در محیطی غنی زندگی می‌کردند که به آنها فرصت‌هایی برای فعالیت فیزیکی می‌داد، همانطور که در بیماران انسانی تشویق می‌شود. درمان ۱۲ هفته پس از آسیب شدید نخاعی شروع شد و به مدت ۱۰ هفته ادامه یافت. محققان پس از درمان TTK21 در مقایسه با درمان شاهد، چندین بهبود پیدا کردند. قابل توجه‌ترین اثر جوانه زدن آکسون بیشتر در نخاع بود. آنها همچنین دریافتند که عقب نشینی آکسون‌های حرکتی در بالای نقطه آسیب متوقف شد و رشد آکسون حسی افزایش یافت. این تغییرات احتمالاً به دلیل افزایش مشاهده شده در بیان ژن مربوط به بازسازی بود. در حالی که این رویکرد تا آزمایش بر روی بیماران انسانی فاصله زیادی دارد، محققان می‌گویند یافته‌های اولیه آنها دلگرم کننده است. گام بعدی تقویت بیشتر این اثرات و تحریک آکسون‌های بازسازی کننده برای اتصال مجدد به بقیه سیستم عصبی است تا حیوانات بتوانند به راحتی توانایی حرکت خود را بازیابند. این کار نشان می‌دهد که دارویی به نام TTK21، هنگامی که به صورت سیستمیک یک بار در هفته پس از آسیب نخاعی مزمن در حیوانات تجویز می‌شود، می‌تواند باعث رشد مجدد نورون‌ها و افزایش سیناپس‌های مورد نیاز برای انتقال عصبی شود. این مهم است زیرا آسیب مزمن نخاع وضعیتی بدون درمان است که در آن رشد مجدد و ترمیم عصبی با شکست مواجه می‌شود. ما اکنون در حال بررسی ترکیب این دارو با دیگر استراتژی‌ها‌ هستیم. منبع

 

بازدیدها: 100

کشف راه ترمیم نخاع

دانشمندان گروهی از سلول‌های بنیادی نهفته را شناسایی کرده‌اند که به آسیب سیستم عصبی مرکزی موش پاسخ می‌دهند. اگر نوع مشابه‌ی از سلول در انسان وجود داشته باشد، آن‌ها می‌توانند یک رویکرد درمانی جدید برای درمان آسیب‌های مغزی و نخاعی ارائه دهند. پس از بیماری یا آسیب، سلول‌های بنیادی با جایگزینی سلول‌های مرده به ترمیم آسیب کمک می‌کنند. در برخی از اندام‌ها، مانند پوست و روده، این سلول‌های بنیادی دائماً فعال هستند، در حالی که در برخی دیگر، به اصطلاح «سلول‌های بنیادی نهفته» در انتظار آسیب هستند تا وارد عمل شوند.

محققان گروهی از سلول‌های بنیادی نهفته را در سیستم عصبی مرکزی موش‌ها شناسایی کردند. اینها بخشی از سلول‌های اپاندیمی هستند که دیواره‌های محفظه‌های مغز و نخاع را می‌پوشانند و مایع مغزی نخاعی را نگه می‌دارد. زمانی که تیم تحقیقاتی از ابزار فلورسانس برای جستجوی سلول‌های ایمنی به نام سلول‌های دندریتیک در مغز استفاده کردند، این سلول‌ها به طور تصادفی شناسایی شدند. این سلول‌ها از سلول‌های پیش‌ساز جنینی ناشی می‌شوند که پروتئین مشابه‌ای با سلول‌های دندریتیک روی سطح خود دارند، که آن‌ها را به دانشمندان نشان داد.

آن‌ها با همکاری محققان عصب‌شناس در موسسه فرانسیس کریک و زیست‌شناسان رشدی در موسسه پزشکی مولکولی لیسبون دریافتند که در موش‌های سالم، این سلول‌ها ثابت می‌مانند و موهای کوچکی روی سطح خود می‌چرخانند تا به جریان مایع مغزی نخاعی کمک کنند. با این حال، در نخاع موش آسیب دیده، این سلول‌ها با تقسیم، مهاجرت به ناحیه آسیب دیده رفته و با تمایز به آستروسیت‌ها، یکی از انواع سلول‌های  اصلی سیستم عصبی، پاسخ دادند. این تیم همچنین این سلول‌ها را در آزمایشگاه با جزئیات بررسی کردند و دریافتند که علائم کلیدی رفتار سلول‌های بنیادی را نشان می‌دهند. به طور مداوم در یک دوره زمانی طولانی تقسیم شدند و همچنین توانستند به هر سه نوع سلول اصلی سیستم عصبی مرکزی نورون‌ها، آستروسیت‌ها و الیگودندروسیت‌ها تمایز پیدا کنند.

محققین ابراز داشتند، در حالی که ما نمی‌دانیم این سلول‌ها در انسان وجود دارند یا خیر، در صورت وجود، جالب است که ببینیم آیا آن‌ها نیز به طور پیش فرض این قابلیت تبدیل آستروسیت‌ها به جای نورون‌ها در پاسخ به آسیب را دارند یا نه؟. این موضوع ممکن است توضیح دهد که چرا سیستم عصبی مرکزی پستانداران توانایی قوی برای ترمیم خود پس از آسیب ندارد. اگر بتوانیم راهی برای غلبه بر موانعی که تمایز به نورون‌ها و الیگودندروسیت‌ها را پس از آسیب نخاعی متوقف می‌کنند، پیدا کنیم، می‌توانیم راه جدیدی از درمان‌ها را برای درمان آسیب‌های نخاعی ارائه کنیم. محققان پیشنهاد می‌کنند که باز کردن پتانسیل این سلول‌ها می‌تواند به بدن کمک کند تا نورون‌های جدیدی تولید کند که مسئول دریافت و ارسال سیگنال‌های کلیدی برای حرکت پس از آسیب ستون فقرات هستند. در مورد اینکه آیا سلول‌های اپاندیمی می‌توانند قابلیت‌های سلول‌های بنیادی عصبی داشته باشند یا خیر، تردید وجود دارد، اما این مطالعه بر پتانسیل آن‌ها تأکید می‌کند. منبع

بازدیدها: 117

کشف پلاستیک عصبی

محققان آسیب نخاعی و مغزی در حال جایگزین‌های جدیدی برای ارتقای بهبود عملکرد پس از آسیب نخاعی هستند. تیم محققان از مدل‌هایی در آزمایشگاه برای بررسی آسیب نخاعی یک‌طرفه مشابه سندرم براون سکوارد، یک بیماری عصبی نادر که در آن آسیب به نخاع در فرد منجر به ضعف یا ضعف می‌شود، استفاده کردند. فلج در یک طرف بدن و از دست دادن حس در طرف مقابل. مدل آسیب نخاعی به اتصال بین نیمکره چپ مغز و سمت راست بدن آسیب می‌رساند و منجر به نقص عملکردی قابل توجهی در سمت راست می‌شود. اندام جلویی عملکرد ماهرانه اندام فوقانی برای کیفیت زندگی در بیماران مبتلا به آسیب نخاعی گردن بسیار مهم است، اما دستیابی به چنین بهبود عملکردی در آسیب شدید بسیار دشوار است. ما متوجه شدیم که سیستم قشر نخاعی دست نخورده در طرف مقابل مغز و نخاع را می‌توان به گونه‌ای تعدیل کرد که حداقل تا حدی کنترل اندام جلویی را که در اثر آسیب نخاعی آسیب دیده است، به دست گیرد و در نتیجه عملکرد اندام جلویی بهبود یابد. هر نیمکره در مغز سمت مخالف بدن را کنترل می‌کند. با دانستن این موضوع، محققان یک جابجایی خود به خودی در مدارهای عصبی پس از آسیب از نیمکره چپ به سمت راست را کشف کردند. اگرچه اتصالاتی بین نیمکره راست مغز و سمت راست بدن از طریق برخی مسیرهای انتقالی پس از آسیب وجود دارد، که این برای حمایت از بهبود حرکتی کافی نیست. این تیم از یک استراتژی نورومدولاسیون اپتوژنتیک تحریک با استفاده از نور در نیمکره راست مغز برای تعدیل قشر حرکتی استفاده کردند. این امر مدارهای عصبی اضافی را از سمت چپ به سمت راست مغز منتقل کرد تا عملکرد اندام جلویی را به طور چشمگیری افزایش داده و بهبود بخشد. مدارهای جدید در نواحی سبیل، اندام جلوی فک و گردن در نیمکره راست مغز برای کنترل اندام جلویی راست به کار گرفته می‌شوند. جالب اینجاست که تغییرات پلاستیکی عصبی مفید هم در مغز و هم در طناب نخاعی دیستال پس از اعمال نورومدولاسیون اپتوژنتیک بر روی قشر حرکتی ظاهر می‌شوند. نتایج این مطالعه بهبود قابل توجهی را در اندام جلویی نشان داد. با این حال، هنوز چالش‌های زیادی در پیش است، زیرا بازیابی کامل دیجیتال موفقیت آمیز نبود. تیم تحقیقاتی به درک و میانجیگری این سازماندهی مجدد عصبی ترانس نیمکره برای بهبود بیشتر بازیابی عملکردی پس از آسیب نخاعی ادامه خواهد داد. او امیدوار است که اکتشافات این مطالعه به یک استراتژی درمانی بالینی برای بیماران مبتلا به ضایعات نخاعی تبدیل شود. منبع

بازدیدها: 93